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1. Introduction position within the host and numbers determine the
success of transmission to the next host (see éeay.,
Parasites are capable of altering a large range of Jong-Brink, 1995; de Jong-Brink et al., 1997, 2001,
phenotypic traits in their host, including morphology, Shaldoum, 200
physiology and behaviour (s Jong-Brink et al., As most important tools to manipulate their hosts,
1997. They induce these changes to continue their parasites have excretion/secretion (E/S) products. Such
life cycle with the ultimate aim of transmission to the manipulative substances that parasites use to influ-
next host. To secure transmission parasites face severaknce their hosts can be seen as allomoBeswn et
tasks. First, they need to find a suitable host in time al., 1970 see alsdKoene and Ter Maat, 20p1Be-
and — in case of endoparasites — they have to be ablecause the E/S products are essential for the parasite’s
to disrupt the epithelial lining of the host (e.g., skin, transmission, many researchers focus on the effects
intestine) in order to enter. During this penetration pro- and identification of these products. However, results
cess and once inside, the parasites immediately havefrom such studies are rarely put into the broader con-
to cope with the host’s innate immune system (IS) and text of ecology and evolution. This topic is addressed
— in case of reinfection — also with the adaptive IS. in the review by Thomas, Adamo and Moore in the
Subsequently, they can actively or passively move to current issue of Behavioural Process@hdmas et
their favoured site within the host’s body. As soon as al., 2005. We welcome this review very much, but
they have reached that location it becomes important have a few comments that we will address in this
to have enough space and energy for increasing theircommentary.
numbers, either asexually or sexually, while not killing
their host untimely. Finally, the parasites’ condition,

2. Phenotypic changes versus behavioural

—_— changes
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in their host. They review the discussion about whether produce only female offspring (e.gdurst and Jiggins,
changes in host behaviour are adaptive or non-adaptive2000.
for either parasite or host. Non-adaptive changes in host
behaviour have been proposed to occur accidentally as
‘by-products’ of other phenotypic changédifchella, 3. How does a parasite change host behaviour?
1985. Like the authors, we doubt whether such acci-
dentally caused behavioural changes will persist dur-  We agree withtThomas et al. (200%hat in order to
ing co-evolution of parasites and hosts if they do not fully understand parasite-host interactions, including
somehow favour the parasite-host interaction. Namely, the way in which parasites alter host behaviour, we
coincidentally beneficial changes persist when they have to unravel the underlying mechanisms. In their
are (indirectly) adaptive. Therefore, the behavioural review, the authors (like many before them) make the
change induced by the eye fluRéplostomun(Poulin, distinction between effects that are caused in a direct
1995 should be seen as a manipulation of feeding be- and anindirectway. The latter case refers to secondarily
haviour of the host, which at the same time makes the altered host behaviour.
host more visible. This manipulation of the host's be- Direct effects are exerted on neurons or muscles. It
haviour achieves two goals of the parasite, it favours is, however, impossible to conclude that parasites have
energy intake of the present host as it is important either a direct or an indirect effect on neurons involved
that the host’s life continues until transmission and in regulating a certain behaviour, based on immuno-
enhances transmission to the next host, a predatoryhistochemical staining. Activity of neurons can not be
bird. deduced from their immunostaining as already demon-
For several parasites (e.g., schistosomes), it hasstrated bywendelaar Bonga (1971fhe release of, for
been shown that they use multiple strategies to ma- example, serotonin does not necessarily coincide with
nipulate processes in their host (s Jong-Brink et a decline of immunostaining because this depends on
al., 200). Hence, it seems unlikely that natural selec- the turn-over rate of secretory material.
tion will favour a parasitic strategy that is accompa- By using a combination of parameters we have
nied by non-adaptive behavioural changes. This meansdemonstrated that parasite-induced changes at the
that we suppose that all behavioural changes causedhost’'s neuronal level are sometimes established in a
by parasites in their hosts are adaptive in the long rather complicated way. Gene expression (in situ hy-
run. bridization) and the size and number of motor neurons
By focussing on behavioural changd$jomas et (measured and counted in histological sections) con-
al. (2005)make a — sometimes rather artificial — sep- trolling copulation behaviour in the sndil stagnalis
aration between parasite-induced changes in host be-clearly reflect the inhibited development (small size) of
haviour and changes of other phenotypic traits of the their target, the male copulation organ, in parasitized
host. Moreover, it is not entirely clear what the authors snails. These effects on the innervating neurons ap-
mean when they refer to ‘novel behaviour’ exhibited peared to depend on the connection with this target or-
by parasitized hosts. This seems like an unfortunate gan @e Lange et al., 20Q10rgan culture experiments
choice of words because we are convinced that the au-have shown that the development of the copulation or-
thors are aware that any ‘novel’ behaviour elicited by gan, on the other hand, is inhibited in a direct way: by
a parasite in a host ultimately depends on the exist- means of parasitic E/S products added to the culture
ing behavioural repertoire of which some components medium ¢le Jong-Brink et al., 1999
may be unknown to the investigators. An apparently  The authors also state that parasitic alteration of
new behaviour is therefore simply an exaggeration, a host’s behaviour is usually an indirect effect of the par-
modification or an assembly of already existing be- asite @damo, 2002 They suggest that this possibly
havioural components. In this way, hairworms are able also holds for the effect of the schistosomréchobil-
to get their hosts into the water although the host would harzia ocellataon the expression of the gene encoding
normally not do soThomas et al., 20Q2Ligula in- neuropeptide Y in the central nervous system of the
testinalisis able to make fish easier to be caudhidt snail hostLymnaea stagnaliLyNPY; de Jong-Brink
et al., 2002, andWolbachiais able to make the host etal., 1999. It has, however, not yet been investigated
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whether the parasite or their E/S products interfere di- 2000 or castrationde Jong-Brink et al., 199%he fit-
rectly with LyNPY gene expression or indirectly viaby ness costs for the host are evident, because they limit
example schistosomin derived from cells belonging to lifetime reproductive output. However, when organ-
the internal defence system of the snail host. isms have more subtle effects on their hosts, a cost

New approaches are necessary to determine whethemeeds to be demonstrated. Several studies have revealed
behavioural changes are direct or indirect effects of thatincreased immune function of infected animals can
parasite manipulation, as indicated bfiomas et al. be costly and is traded-off against investment in re-
(2005) They point out that proteomics is one of the production and predator avoidance (e$heldon and
ways forward in studying the mechanisms underlying Verhulst, 1996; Webster and Woolhouse, 1999; Rigby
manipulation of hosts by parasites and mention that and Jokela, 20Q0Additionally, potential benefits from
several studies are currently being undertaken usingthe infection for the host need to be excluded. That
this approach. Obviously, more or less the same appliesthere exists a very fine distinction between parasitism
to peptidomics. Here, we would like to note thatthe use and symbiosis has been revealed in cleaner fish and
of microarrays will be a second extremely powerfultool red-billed oxpeckers (resgsrutter and Bshary, 2003;
(e.g.,Mallo et al., 2002; Couillault et al., 2004The Weeks, 200D
prerequisite for this approach is that (a large part of) the
genome of the species of interest needs to have been
sequenced. Butthen, using such a DNA microchip, one 4. Parasite-host interactions in an ecological
can directly compare the differential expression of a context
whole slew of genes in parasitized and non-parasitized
animals. Thomas et al. (2005hdicate that studies under lab-

If microarrays are available for both host and para- oratory or semi-natural conditions may be a poor ap-
site, this will allow for a differentiation between direct  proximation of the field situation. Although controlled
and indirect effects of infection, which seems much infections in the laboratory may exaggerate the situa-
more difficult in proteomics or peptidomics. But be- tion in the field, they are essential for detailed studies
sides using fancy techniques, proper observations andof the effect of a parasite on its host, including the
experimental design can also provide clear evidence for underlying mechanisms. Nevertheless, we agree that
whether an effect is direct or indirect. There are good assessing the field situation will provide an additional
examples of studies where parasites have been showrpiece of the manipulation puzzle.
to directly affect the host’s behaviour (e.§ranz and Inrecentyears, several studies have used exactly the
Kurtz, 2002; Brown etal., 2002whereasin othercases approach suggested Ajhomas et al. (2005p study
the effect of the parasite turned out to be indirect (e.g., parasite-host interactions in an ecological context. For
Edelaar et al., 2003 example, it has been shown that different natural strains

Whether a parasitic manipulationis directorindirect of Caenorhabditis elegansope differently with a po-
may also have implications for the costs of the manip- tential parasite$chulenburg and Mler, 2009. Also,
ulation for the parasite. The authors mention that the a field study on the reef fisihalassoma bifasciatum
parasite’s fithess costs for host manipulation are often demonstrated that the level of parasite infection influ-
simply deduced from the occurrence of manipulation. ences the size at which sex change occachérer and
Obviously, there will normally be a cost for the parasite Vizoso, 2003. Another parasite-host interaction that
to bring the manipulation about. Therefore, the authors has been investigated in detail in the laboratory is the
rightly suggest to take the underlying mechanisms into interaction between the pond snhailstagnalisand the
account in order to asses the costs for the parasite. Buttrematod€l. ocellata(e.g.,de Jong-Brink et al., 2001
it should also be noted that the parasite’s investment Although the majority of snails can be infected un-
has to be outweighed by the gained benefit, otherwise der laboratory conditions, in the field infections with
the manipulation could not be maintained. Trichobilharziaare rare (0.17%.oy and Haas, 20Q1

An important point that is only addressed very 0.7-4.8%:Zbikowska, 200 Nonetheless, all year
briefly is that the costs for the host are also often as- round almost 50% of the snails collected in the field are
sumed. In cases like male-killindd(rst and Jiggins,  infected with one ore more species of trematodesy
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and Haas, 20Q1Koene et al., unpublished). Among cover such arms races between hosts and parasites,

these ard. ocellata, Echinostoma revoluty@pisthio- thus explaining the strict host specificity of many par-

glyphe ranagHypoderaeum conoidunbiplostomum asites Lockyer et al., 2001 As recently pointed out

spathaceumandPseudoechinoparyphium echinatum by Woolhouse et al. (2002understanding these co-
The above findings illustrate the importance of con- evolutionary processes is essential for fully understand-

sidering host-parasite interactions in a metapopulation ing the impact of pathogens on their hosts, and should

context, as clearly put forward Ghomas et al. (2005) provide novel insights for medical and veterinary

That this idea is not new, becomes evident from stud- research.

ies that have investigated differences in parasite resis-

tance between different populations of a host species.
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