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Abstract
Sexual conflicts often arise between mating partners because each sex tries to maxi-
mize its own reproductive success. One major male strategy to influence a partner's 
resource allocation is the transfer of accessory gland proteins. This has been shown 
to occur in simultaneous hermaphrodites as well as in organisms with separate sexes. 
Although accessory gland proteins affect the investment of resources in both male 
and female function, we here specifically focus on female investment. In the great 
pond snail, Lymnaea stagnalis, previous studies found that the accessory gland protein 
ovipostatin reduced female fecundity by suppressing egg laying in the partner in the 
short term (days). To investigate whether this reduction in egg laying is a commonly 
found effect of mating in freshwater snails, we compared egg output for evidence of 
suppression in isolated and paired snails of eight pulmonate species. Furthermore, 
we determined whether the suppression of egg laying caused a shift in resource al-
location to the eggs. We found that in five of the eight species egg laying was sup-
pressed, with fewer and lighter egg masses being laid when they had access to a 
mating partner. In mated pairs of L. stagnalis and Biomphalaria alexandrina, allocation 
of resources to the eggs was altered in opposite ways: individuals of L. stagnalis laid 
fewer but larger and heavier eggs; individuals of B. alexandrina laid smaller and lighter 
eggs, with no change in egg numbers. Such changes in the female function are most 
likely the result of combined effects of receiving accessory gland proteins, and the 
cost of mating in both male and female roles. Thus, effects of the maternal environ-
ment, including the receipt of accessory gland proteins, on offspring investment are 
not restricted to species with separate sexes.
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1  | INTRODUC TION

During sexual interactions, reproductive optima often differ be-
tween the sexes as each sex tries to maximize its own reproductive 
success (Bonduriansky, 2001). Females generally invest relatively 
heavily in offspring production and, as a result, their reproductive 
success is largely determined by the choice of the right mating part-
ner(s). Males invest substantially less towards offspring production, 
in terms of gametes; their reproductive success is therefore re-
stricted by mate availability and thus mating opportunities (Bateman, 
1948). What is more, traits that increase the reproductive success 
of one sex may be maladaptive to the other, thereby displacing one 
or both sexes from their evolutionary fitness optimum (Kazancıoğlu 
& Alonzo, 2012). Such interlocus conflicts can give rise to extreme 
and costly mating behaviors, setting off a sexually antagonistic arms 
race (Arnqvist & Rowe, 2005; Bonduriansky, 2001; Chapman, 2006). 
One typical example of sexual conflict is mating frequency, because 
males of many species have higher optimal rates of mating than do 
females (Chapman, Arnqvist, Bangham, & Rowe, 2003; Daly, 1978), 
while the costs of multiple mating in females are often relatively 
high. The cost of mating in females is not only due to the direct costs 
of mating, but also to physical damage that incurs survival and re-
productive costs (Arnqvist & Nilsson, 2000; Kazancıoğlu & Alonzo, 
2012; Rowe, Arnqvist, Sih, & Krupa, 1994; Wigby & Chapman, 2005).

Differences in reproductive strategies between the sexes find 
their origin in anisogamy (i.e., gamete size difference between the 
sexes) and should therefore also be present in hermaphroditic organ-
isms (Schärer, Rowe, & Arnqvist, 2012). Recent research has indeed 
shown that sexual conflict does occur in simultaneous hermaphro-
dites and that it forms a driving force that is as important as that for 
the evolution of separate-sexed organisms. For example, sexual con-
flict is thought to have resulted in the evolution of seemingly harmful 
matings involving traumatic insemination in separate-sexed organ-
isms such as bedbugs (Arnqvist & Rowe, 2005), strepsiptera insects 
(Peinert et al., 2016), and some cephalopods (Hoving et al., 2006), and 
in hermaphrodites such as sea slugs and polyclad flatworms (Anthes 
& Michiels, 2007; Michiels & Newman, 1998; Schmitt, Anthes, & 
Michiels, 2007); for a review see Reinhardt, Anthes, & Lange, 2015). 
Besides injection of sperm, hypodermic injection of accessory gland 
products alone can also be harmful, which is the case in land snails 
(Hasse, Marxen, Becker, Ehrenberg, & Epple, 2002; Koene, 2006; 
Schilthuizen, 2005) and earthworms (Koene, Pförtner, & Michiels, 
2005; for a review see Zizzari, Smolders, & Koene, 2014).

Being both male and female, simultaneous hermaphrodites can 
strategically allocate shared reproductive resources to the sexual 
function with the highest reproductive gains (Koene, 2017). This 
reallocation often seems to be dependent on body size, because 
larger individuals lay substantially more eggs, allocating more to-
wards their female function, while smaller individuals allocate pro-
portionally more towards their male function (Hermann, Genereux, 
& Wildering, 2009; Mary, 1994; Petersen & Fischer, 1996; Schärer 
& Wedekind, 2001). In addition, simultaneous hermaphrodites can 
allocate resources to either their male or female function, depending 

on mating opportunity and partner quality (Charnov, 1979; reviewed 
in Schärer & Janicke, 2009). Studies on the great pond snail, Lymnaea 
stagnalis, found that sperm donors preferred new partners and that 
more sperm were transferred to virgins (Koene & ter Maat, 2007; 
Loose & Koene, 2008). Such flexibility, however, also opens up the 
possibility for manipulation, in which a sperm donor can alter the 
allocation of resources in a partner to benefit its own reproduc-
tive success (Hoffer, Schwegler, Ellers, & Koene, 2012; Michiels & 
Newman, 1998; Nakadera, Swart, Hoffer, et al., 2014).

One way of influencing a partner's allocation of resources is via 
accessory gland proteins (ACPs), often referred to as seminal fluid 
proteins when such proteins are transferred together with sperm in 
an ejaculate. Accessory gland proteins have been found to alter the 
behavior and/or physiology of the recipient in many species. In some 
insects, such as seed beetles, coccinellid beetles, fruit flies, and mos-
quitoes, these proteins induce post-mating responses such as a re-
duction in the willingness to re-mate (Lebreton et al., 2014; Perry et 
al., 2013). In Drosophila melanogaster, at least 138 identified acces-
sory gland proteins seem to be transferred during mating (Findlay, 
Yi, MacCoss, & Swanson, 2008), and many of these proteins have 
been shown to each affect a specific aspect of the female physiol-
ogy, such as increasing egg production (Avila, Ravi Ram, Bloch Qazi, 
& Wolfner, 2010; Hihara & Hirata, 1981; Ravi Ram & Wolfner, 2007, 
2009; Rubinstein & Wolfner, 2013).

The role of seminal fluid components in simultaneous hermaph-
rodites has predominantly been studied in the pond snail L. stagnalis 
(but see Weber et al., 2018 for recent developments in Macrostomum 
lignano). These snails are capable of storing, digesting, and using 
sperm from multiple sperm donors, thus enhancing the level of sperm 
competition between rivals (Koene, Montagne-Wajer, Roelofs, & ter 
Maat, 2009; Nakadera, Swart, Hoffer, et al., 2014). Several studies 
indicate that high mating rates decrease egg laying, suggesting a 
probable effect of accessory gland proteins (de Visser, ter Maat, & 
Zonneveld, 1994; van Duivenboden, Pieneman, & ter Maat, 1985). 
In fact, ovipostatin (LyAcp10), an accessory gland protein produced 
in the prostate gland, was identified as the protein that suppressed 
egg laying by nearly 50% in the recipient (Koene et al., 2010), al-
though the known physiological effects were short lived (less than a 
week). Studies have since shown that continuously-paired, as well as 
repeatedly-mated, individuals laid fewer eggs than individuals with 
less frequent mating opportunities, suggesting that higher mating 
frequencies displace females from their reproductive optima, even 
though the remaining weight per egg increases (Hoffer et al., 2012) 
and hatching success may increase (Hoffer, Mariën, Ellers, & Koene, 
2017). As a result, it has been suggested that repeated receipt of ejac-
ulates, caused by high mating rates, in combination with lower female 
fecundity indicate that sexual conflict also occurs in hermaphrodites 
that transfer accessory gland proteins via their ejaculate.

To investigate whether the effects observed in L. stagnalis are 
also present in other hermaphrodites, we compared snails within the 
molluscan clade Hygrophila, which are pulmonate freshwater snails 
belonging to the informal group Basommatophora (Jarne, David, 
Pointier, & Koene, 2010), to study allocation changes after recent 
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mating opportunities. Our eight study species, which included the 
model organisms L. stagnalis and Biomphalaria glabrata, comprised 
three different families (lymnaeids, planorbids, and physids). We 
tested whether mating opportunities would lead to a reduction in 
egg laying across snail species. If so, this would be an indicator that 
an ovipostatin-like effect evolved in the common ancestor of these 
three families. If, however, reduction in egg laying were unique to 
L. stagnalis, it would suggest that the evolution of this accessory 
gland protein is determined by more recent selection pressures. In 
addition, we quantified and analyzed morphological measurements 
of eggs, including dry weight, surface area, length, and volume, to 
determine whether egg laying suppression would result in a reallo-
cation of resources to the individual eggs. Overall, our work deepens 
the knowledge from previous reports of changes in egg investment 
in L. stagnalis (Hoffer et al., 2012) and extends our understanding of 
egg investment in different species, showing a generality of reallo-
cation in response to changes in egg laying.

2  | METHODS

2.1 | Study species

For this study we used eight simultaneously hermaphroditic spe-
cies in the Hygrophila clade. The study species included five lym-
naeids (L. stagnalis, Pseudosuccinea columella, Stagnicola palustris, 
Stagnicola corvus, and Radix auricularia), one physid (Physa acuta), 
and two planorbids (B. glabrata and Biomphalaria alexandrina). Our 
group at the Vrije Universiteit Amsterdam maintains several age-
synchronized breeding tanks of the selected species in its mollus-
carium. Individuals of L. stagnalis (Linnaeus 1758) are easily reared 
under laboratory conditions, making this species a suitable model 
organism (Koene & ter Maat, 2005). The culture has been main-
tained for 50 years, originating from a wild population in a nature 
reserve and an agricultural area near Eemnes, The Netherlands. The 
culture of P. acuta (Draparnaud 1805) is a lab strain originating from 
the Netherlands that has successfully been reared for 20 years. The 
cultures of S. palustris (Müller 1774), S. corvus (Gmelin 1791), and R. 
auricularia (Linnaeus 1758) have been bred for nearly 5  years, and 
originate from Belgium and The Netherlands. As with L. stagnalis, all 
these species have a Holarctic distribution. Pseudosuccinea columella 
(Say 1817) is endemic to eastern North America but occurs over large 
parts of the Neotropics and has successfully been introduced into 
Europe. Our culture of this species originates from a greenhouse in 
Belgium and had been bred for nearly 5 years. Biomphalaria glabrata 
(Say 1818) came from a Brazilian lab strain 15 years ago and has a 
Neotropical distribution. B. alexandrina (Ehrenberg 1831) originates 
from the Nile region and has been bred successfully for 4 years.

The breeding and experimental laminar-flow basins for cultures of 
all species were maintained under similar environmental conditions 
at 20°C (±1°C), in oxygenated low-copper water, with a light:dark 
regime of 12:12 hr. The cultures were alternately fed broadleaf let-
tuce (Lactuca sativa L., frozen and then thawed for some species) or 

fish flakes (TetraPhyll, Tetra GmbH, Melle, Germany) three times per 
week (Koene & ter Maat, 2005).

All study species, except P. columella, generally mate unilater-
ally by performing a single sex role during a given mating, but can, 
after completing a unilateral sperm donation, reciprocate by switch-
ing roles (Koene & ter Maat, 2005; van Duivenboden & ter Maat, 
1985). In P. columella, there is some evidence for a predominance of 
selfing over outcrossing (Gutiérrez, Yong, Wong, & Sánchez, 2002; 
Jabbour-Zahab et al., 1997; Nicot, Dubois, Debain, David, & Jarne, 
2008). In addition, all the species lay gelatinous capsules filled with 
eggs, which we refer to as egg masses (Tompa, Verdonk, & van den 
Biggelaar, 1984). Within each egg is an embryo surrounded by nu-
trient-rich perivitelline fluid provided by the albumen gland (Plesch, 
Jong-Brink, & Boer, 1970). After having received sperm from a sperm 
donor, the recipient can store and use this sperm for the fertilization 
of its eggs several weeks to months after mating (Nakadera & Koene, 
2013). All the adult individuals, when entering the experiment, had 
ample opportunity to donate and receive sperm.

2.2 | Experimental setup

In order to determine whether mating opportunities cause a reduc-
tion in egg laying, we compared the egg output of isolated snails to 
that of paired snails in the following experiment. For each of eight 
species, 65 age-synchronized adult snails were collected from our 
breeding facility (see Nakadera, Swart, Maas, et al., 2014 for details), 
where they would have had previous mating opportunities, and their 
shell lengths were measured before experimentation. The experi-
ment consisted of two phases (see below): an 11-day pre-treatment 
phase, in which all snails were kept isolated; and an 11-day treat-
ment phase, during which snails were either assigned to an isolated 
treatment (n  =  20) or to a paired treatment (n  =  40; Figure 1). In 
this way we could account for individual differences in fecundity 
by either comparing the same individual under isolated and paired 
conditions or by comparing egg laying of the same individual during 
two subsequent periods of isolation. Note that individuals of L. stag-
nalis can store sperm for up to 2 months (Nakadera, Blom, & Koene, 
2014); thus, paired (single partner; Figure 1) and isolated (no partner; 
Figure 1) snails were assumed to lay outcrossed egg masses. Our 
focus was on the immediate effect of additional mating opportuni-
ties on female fecundity during the treatment phase, including the 
receipt of ACPs (ovipostatin in particular). Previous work by Hoffer 
et al. (2012) showed that in L. stagnalis, the presence of an inaccessi-
ble mating partner does not affect female reproductive investment. 
Based on those findings, we here assumed that investment changes 
were induced by actual mating, and for that reason (and to keep the 
experimental setup simple and manageable) we chose to contrast 
the isolated and paired treatment of adult snails only.

The first 4 days of the pre-treatment and treatment phase con-
sisted of a standardization period, during which the individuals were 
allowed to accommodate to the new condition. For the pre-treat-
ment phase, standardization meant isolating the snails, thereby 
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removing any direct physiological effects (including the recent re-
ceipt of ovipostatin) of previous copulations from their time in the 
lab culture (van Duivenboden et al., 1985), or to control for increases 
in egg laying due to clean-surface stimulus, which is triggered when 
snails are placed in clean containers (ter Maat, Lodder, & Wilbrink, 
1983). Isolation also served to increase male motivation for mating 
(Koene, Loose, & Wolters, 2008; Swart et al., 2019). All non-laying 
individuals were removed from the experiment after the pre-treat-
ment standardization period. For the treatment phase, standardiza-
tion was needed to ensure copulation between the pairs occurred. 
Note that all egg masses laid during the standardization periods 
were discarded. Also, egg masses laid by individuals or pairs in which 
one of the partners died during the experiment were removed from 
the analysis.

Standardized snails remained isolated in perforated plastic con-
tainers (460 ml) for the pre-treatment week, during which time all 
egg masses laid were collected twice to determine each individuals’ 
egg output during one week in isolation (Figure 1). In the treatment 
phase, all snails were ranked according to size and allocated to either 
an isolated treatment or a paired treatment, ensuring each treatment 
had a similar range in body size. The pairs were matched accord-
ing to size (±1 mm), thereby removing size effect between partners 
(Nakadera, Swart, Maas, et al., 2014). As above, the standardization 

period was followed by a treatment week, during which time all egg 
masses laid by isolated and paired snails were collected twice to 
determine treatment effect on egg laying (Figure 1). Although not 
quantified systematically, pairs of all the species were seen mating 
during the experimental period, and most have been reported to 
mate multiple times within a few days after a period of isolation.

The number of egg masses, eggs per mass, as well as dry weight 
per egg mass and per egg were recorded for the two phases of the ex-
periment. Egg masses were scanned at 150× magnification (Canoscan 
LiDE 700F Scanner), with a micrometer for scale, then freeze-dried 
(Lyph-Lock 6, Labconco, Kansas City, MO) to determine dry weight 
(microbalance, Mettler Toledo, UMT2, GmbH, Switzerland) per 
egg mass (g) and per egg. From the scans, the number of eggs per 
egg mass were later counted manually with the help of ImageJ Cell 
Counter plugin (http://rsb.info.nih.gov/ij/; http://rsbweb.nih.gov/ij/
plugi​ns/cell-count​er.html). ImageJ was used to measure different vari-
ables (surface area and Feret's diameter: length and width) from the 
outer periphery of each of five randomly selected eggs from each egg 
mass. Using Feret's diameter, egg volume was calculated following 
the standard formula of an ellipsoid (for overview of methods see van 
Iersel, Swart, Nakadera, van Straalen, & Koene, 2014).

All statistics were performed with IBM SPSS 20. To reduce 
the effect of individual differences in reproduction, pre-treatment 

F I G U R E  1  A schematic diagram of the experimental setup to test female reproductive output in several species of hermaphroditic 
freshwater snails. During the four-day acclimatization period preceding the pre-treatment and treatment weeks, all egg masses were 
discarded (acclimatization time, depicted as grey and pink egg masses). Egg masses were only collected during the two experimental weeks 
(seven days, depicted as black and red egg masses). The pre-treatment phase started once all snails were isolated, and the treatment phase 
started once the snails were divided into the two treatments, either remaining isolated (no partner) or being paired up with a size-matched 
partner (single partner, as indicated by black and red individuals). Note that there are no focal individuals within the pairs, and measurements 
from the egg masses produced by the paired black and red individuals were averaged. All snails were adults prior to the pre-treatment and 
are thus assumed to have sperm stored from previous mates that they use for producing outcrossed eggs

http://rsb.info.nih.gov/ij/
http://rsbweb.nih.gov/ij/plugins/cell-counter.html
http://rsbweb.nih.gov/ij/plugins/cell-counter.html
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week data were subtracted from the treatment week data per indi-
vidual, and this difference in values was indicated with delta (δ). A 
Student's t-test was performed to determine the treatment effect 
on relative changes in fecundity (egg mass number, egg number, dry 
weight of egg mass) and reallocation of resources to eggs (egg dry 
weight, surface area, width, and volume). The number of eggs, egg 
masses, and total dry weight of egg masses were calculated per pair 
from the pre-treatment period by summing the egg output of both 
snails during isolation and dividing this by two. This was done so 
that the combined egg output during the treatment period could also 
be divided by two, to reflect output per snail. Individuals that did 
not lay egg masses during the treatment week were excluded from 
statistical analyses of variables associated with the reallocation of 
resources to eggs (see Table S1 for percentages of individuals from 
each species that did not lay eggs). The percent change between the 
paired and the isolated treatments was calculated for each egg vari-
able during the treatment week as [(δpaired−δisolated)/|δisolated|] × 100, 
where “|” symbols indicate mean absolute value and δ is the calcu-
lated relative difference.

To address the phylogenetic relationships among the species 
used in this study, the maximum likelihood (ML) method was applied 
by using 16S mitochondrial gene sequences from GenBank (acces-
sion numbers: B. alexandrina AY030204.1; B. glabrata KF892020.1; L. 
stagnalis AY577461.1; P. columella U82073.2; S. corvus U82079.2; S. 
palustris U82082.2; P. acuta U038308.1; R. auricularia AF485646.1). 
To provide a robust rooting, we used Latia neritoides and an unidenti-
fied species of Chilina as outgroups (accession numbers: EF489307.1 
and HQ659898.1, respectively). Sequences were aligned with 
MUSCLE and curated using Gblocks. The ML tree was built using 
PhyML and TreeDyn and tested for reliability by performing 1,000 
bootstraps (Dereeper et al., 2008; Dereeper, Audic, Claverie, & 
Blanc, 2010). It should be noted that it was not our aim to recon-
struct the full phylogeny of the freshwater snails, but to use this tree 
to assess the phylogenetic signal in the egg laying response. To do so, 
we used Blomberg's K with the phyloSignal function in the statistical 

packages Phytools and Ape within R software version 3.3.3 (Revell, 
2012). The degree to which a trait shows phylogenetic signal pre-
dicted under Brownian evolution is indicated by K (K = 0 means that 
there is no phylogenetic signal, K < 1 means that closely related spe-
cies weakly resemble each other, and K  >  1 indicates that closely 
related species strongly resemble each other; Blomberg, Garland, & 
Ives, 2003). To obtain p-values of K we used 1,000 randomizations.

3  | RESULTS

3.1 | Relative change in female fecundity

In L. stagnalis we found a significant decrease in female fecundity 
of paired individuals compared to isolated snails, with a 70% re-
duction in the number of egg masses laid (t(41)  = 2.06, p  =  .046), 
while a three-fold reduction was found in the number of eggs laid 
(t(41) = 3.68, p =  .001; Table 1; see Table S1 for averages per spe-
cies per treatment). In total, the paired snails laid lighter egg masses, 
decreasing total dry weight of egg masses by 140%, compared to 
isolated individuals (t(41) = 2.9, p = .006; Table S1).

Two of the other lymnaeids, namely P. columella and S. corvus, 
showed a similar decrease in fecundity. In both species, paired indi-
viduals laid significantly fewer egg masses than isolated individuals (P. 
columella, −1,065%, t(31) = 3.13, p = .004; S. corvus, −69%, t(30) = 3.4, 
p =  .002; Table 1). Total egg numbers laid by pairs were significantly 
lower than for isolated individuals (P. columella, −887%, t(31) = 2.83, 
p = .008; S. corvus, −64%, t(38) = 3.22, p = .003). The total dry weight 
of egg masses decreased in the paired treatment (P. columella, −658%, 
t(31) = 0.11, p = .03; S. corvus, −51%, t(38) = 2.77, p = .009; Table S1). As 
in L. stagnalis, paired individuals of P. columella and S. corvus laid fewer 
and lighter egg masses, with a significant reduction in egg numbers 
compared to isolated snails (Table 1 and Table S1).

For the two planorbids, B. alexandrina and B. glabrata, the num-
ber of egg masses laid decreased as a result of pairing, though no 

TA B L E  1  The relative change in female fecundity (pre-treatment week subtracted from treatment week), for number of egg masses and 
eggs, between the paired treatment and the isolated treatment; p < .05 are indicated in bold. The percent difference and the corresponding 
difference δ (in parentheses) between the two treatments are also shown

Family Species

Relative number of egg masses Relative number of eggs

Isolateda Paireda p

% 
difference 
(δ) Isolateda Paireda p

% 
difference 
(δ)

Lymnaeidae Stagnicola palustris −1.00 ± 1.04 −1.80 ± 1.13 .077 −36 (0.6) −41 ± 22 −46 ± 52 .75 −5 (1)

Stagnicola corvus −3.25 ± 2.57 −5.50 ± 1.46 .002 −33 (1.7) −49 ± 25 −80 ± 36 .003 −19 (8)

Lymnaea stagnalis −0.96 ± 1.25 −1.60 ± 0.81 .046 −36 (0.5) −36 ± 89 −150 ± 113 .001 −54 (98)

Pseudosuccinea columella 0.13 ± 1.45 −1.21 ± 0.95 .004 −33 (1.3) −3 ± 38 −33 ± 21 .008 −42 (44)

Radix auricularia −1.90 ± 1.60 −2.50 ± 1.70 .26 −10 (0.5) −64 ± 57 −69 ± 56 .81 −15 (23)

Physidae Physa acuta −2.60 ± 2.00 −3.50 ± 1.20 .22 −18 (1.1) −110 ± 66 −122 ± 54 .64 −7 (10)

Planorbidae Biomphalaria glabrata 1.35 ± 2.56 −1.93 ± 2.77 .001 −20 (3.3) 47 ± 155 24 ± 166 .66 27 (77)

Biomphalaria alexandrina 4.04 ± 5.06 −5.20 ± 2.43 .001 −47 (8.5) −47 ± 163 −29 ± 141 .70 −2 (10)

aValues are means ± SD. 

info:ddbj-embl-genbank/AY030204.1
info:ddbj-embl-genbank/KF892020.1
info:ddbj-embl-genbank/AY577461.1
info:ddbj-embl-genbank/U82073.2
info:ddbj-embl-genbank/U82079.2
info:ddbj-embl-genbank/U82082.2
info:ddbj-embl-genbank/U038308.1
info:ddbj-embl-genbank/AF485646.1
info:ddbj-embl-genbank/EF489307.1
info:ddbj-embl-genbank/HQ659898.1
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difference was found in the number of eggs laid. A greater than 
two-fold decrease was found in the number of egg masses laid by 
paired individuals of B. alexandrina and B. glabrata compared to 
isolated counterparts (B. alexandrina, −229%, t(41) = 7.45, p = .001; 
B. glabrata, −243%, t(38) = 3.88, p  = .001; Table 1). No difference in 
the number of eggs laid by either species was found between the 
two treatments (B. alexandrina, t(41) = −0.38, p   =  .7; B. glabrata, 
t(38) = 0.438, p  = .66). Total dry weight of egg masses, however, 
did decrease significantly in the paired treatment in both the spe-
cies (B. alexandrina, −91%, t(41) = 2.27, p  = .03; B. glabrata, −376%, 
t(38)  =  4.76, p  =  .001; see Table S1). Thus, paired individuals of 
both species of Biomphalaria laid fewer and lighter egg masses, 
but no change in egg numbers was detected compared to isolated 
snails, although this was, in part, due to high variation (Table 1 and 
Table S1).

No change in female fecundity was found in the remaining lym-
naeids, S. palustris and R. auricularia, nor in P. acuta, with egg mass 
number (Table 1), egg number, and dry weight of egg masses not sig-
nificantly different between isolated and paired snails (p > .05; Table 
S1). However, there was a trend for paired individuals of S. palustris 

to lay fewer egg masses than isolated individuals (−81%, t(23) = 1.85, 
p = .077).

3.2 | Change in allocation of resources to eggs

Paired individuals of L. stagnalis laid heavier and larger eggs than 
isolated snails. In L. stagnalis, the change in the dry weight of eggs 
laid by paired snails did not differ between the 2 weeks, while a sig-
nificant decrease in egg weight was detected in isolated snails (96%, 
t(36) = −3.02, p =  .005). Relative egg surface area, egg width, and 
egg volume all increased in the paired treatment but decreased in 
the isolation treatment (for all species, p < .01). Egg surface area was 
thus used as a proxy for egg size as it adequately represented the 
other egg measurements (Table 2 and Table S1). A 271% increase in 
egg size was found after pairing compared to isolation (t(36) = −8.14, 
p = .001; Figure 2; Table 2 and Table S1).

In B. alexandrina, the reduction in number of egg masses in the 
paired treatment was not associated with a reallocation of resources 
to the eggs; in isolated individuals, egg weight and size increased 

TA B L E  2   Change in allocation of resources to eggs: the relative change in egg dry weight and surface area (pre-treatment week 
subtracted from treatment week), between the paired treatment and the isolated treatment; p < .05 are indicated in bold

Family Species

Relative egg dry weight Relative egg surface area

Isolateda Paireda p Isolateda Paireda p

Lymnaeidae Stagnicola palustris −3.09 ± 10.3 −5.45 ± 23 .80 −2 ± 30 −7 ± 43 .64

Stagnicola corvus −7.56 ± 10.1 −5.30 ± 4.4 .37 −13 ± 45 −3 ± 22 .38

Lymnaea stagnalis −11.6 ± 5.4 −0.41 ± 16 .005 −68 ± 65 108 ± 65 .001

Pseudosuccinea columella −0.80 ± 4.7 0.20 ± 3.5 .49 −14 ± 41 3 ± 41 .23

Radix auricularia −2.65 ± 16.1 −0.73 ± 8.8 .64 −24 ± 58 −21 ± 2 .82

Physidae Physa acuta −2.75 ± 7.7 −5.60 ± 3.4 .26 −43 ± 80 −59 ± 51 .58

Planorbidae Biomphalaria glabrata 8.50 ± 17.9 2.90 ± 13 .26 143 ± 204 31 ± 186 .077

Biomphalaria alexandrina 3.30 ± 6.7 −4.90 ± 7.9 .001 156 ± 77 9 ± 69 .001

aValues are means ± SD. 

F I G U R E  2  Summary of the results and phylogeny of the species used in this study of female reproduction in hermaphroditic freshwater 
snails. The maximum likelihood phylogenetic tree is shown on the left side, with Latia neritoides and a species of Chilina as outgroups. On 
the right side, a summary table of the results for the different egg laying parameters is shown (each row corresponds to each species used in 
this study). Significant differences between paired and isolated treatments are indicated by the direction of change of each variable ("Up" or 
"Down"). Parentheses indicate a nonsignificant trend
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over time, whereas paired snails laid significantly lighter and smaller 
eggs (egg weight, −251%, t(41)  =  3.69, p  =  .001; egg size, −94%, 
t(41) = 6.53, p = .001) than their isolated counterparts (Figure 2). In B. 
glabrata, there was no difference in relative egg dry weight between 
the treatments, although there was a tendency for paired snails to 
lay smaller eggs (−78%, t(38) = 1.82, p =  .08; Figure 2; Table 2 and 
Table S1). None of the other species showed a significant realloca-
tion of resources to the eggs (Table 2 and Table S1).

3.3 | Phylogeny

In order to assess the phylogenetic relationships among the spe-
cies tested, we performed a phylogenetic reconstruction analy-
sis which resulted in a tree (Figure 2) that is consistent with the 
phylogeny of Basommatophora (e.g. Correa et al., 2010; Dayrat et 
al., 2011). We found no significant association between presence/
absence of a change in egg laying and phylogenetic position of the 
test species, but we did find that closely related species resembled 
each other in their quantitative response (egg masses, K = 0.975, 
p =  .023; egg numbers, K = 1.081, p =  .008), which is consistent 
with our findings that pairing affected egg number only in the 
Lymnaeidae, and that the directions of change in egg dry weight 
and surface area were opposite in the Planorbidae compared to 
the Lymnaeidae.

4  | DISCUSSION

Our findings highlight that the effects of the maternal environ-
ment, including the presence of a mate, on offspring investment 
and possibly fitness are not restricted to species with separate 
sexes. For five of the eight hermaphroditic snail species we in-
vestigated, female reproductive investment was altered by hav-
ing the opportunity to mate. When comparing the egg production 
of paired snails to isolated snails, we found that egg laying was 
suppressed after pairing in the majority of species that we tested. 
However, this reduction in egg production was not associated with 
an increased investment of resources per egg in any of the species 
except in L. stagnalis. In fact, in both species of Biomphalaria, indi-
viduals in the paired treatment showed a reduction not only in the 
number of egg masses laid but also in the investment per offspring 
(measured as either weight and/or size of eggs), leading to an over-
all decrease in reproductive investment when mated. In summary, 
these results provide evidence for a common phylogenetic signal 
that is indicative of an ovipostatin-like effect in multiple species, 
but also suggests that other factors may be involved in determin-
ing egg size. The possibility that ovipostatin may be involved is 
supported by the recent report that sequences matching the gene 
that encodes this accessory gland protein were found in the ge-
nome of B. glabrata (Adema et al., 2017).

The reduction in egg laying found in the paired treatment could 
be due to high energetic investment in mating in either the male 

or the female role, causing a reallocation of resources away from 
egg laying in the short term. A high cost of mating in either sex 
role has been indicated by numerous studies on insects (Arnqvist 
& Nilsson, 2000), ungulates (McElligott, Naulty, Clarke, & Hayden, 
2003), pinnipeds (Deutsch, Haley, & Le Boeuf, 1990; Galimberti, 
Sanvito, Braschi, & Boitani, 2007), and primates (Thompson & 
Georgiev, 2014), to name a few. This would reflect a direct trade-
off in the allocation of resources between the sexes predicted by 
sex allocation theory (Charnov, 1979; Schärer & Janicke, 2009). 
Isolated snails that are previously mated and non-selfing are re-
stricted to the female role, and they therefore only lay eggs and 
do not receive or donate ejaculates. By contrast, paired snails 
must divide their resources between both sex roles (egg laying, 
courtship behaviors, ejaculate production). Hoffer, Ellers, and 
Koene (2010) found that individuals of L. stagnalis that were ex-
perimentally restricted solely to the male function (sperm dona-
tion) experienced a similar reduction in fecundity as those mating 
reciprocally (in both sex roles; receiving and donating ejaculates). 
The high costs of mating in the male role (courtship behaviors, 
producing and delivering an ejaculate containing sperm and acces-
sory gland proteins) can cause a direct reallocation of resources 
from female to male function within the same individual (Hoffer 
et al., 2010). Similar suppression in egg laying after mating or after 
grouping (in studies where copulations were not monitored) seems 
to be quite widespread across hermaphroditic gastropods; it has 
been reported in the sea hare Aplysia brasiliana (Blankenship, Rock, 
Robbins, Livingston, & Lehman, 1983), the land snail Bradybaena 
pellucida (Kimura & Chiba, 2015), and the freshwater snail spe-
cies Lymnaea elodes (Florin et al., 2000), B. glabrata (Thomas & 
Benjamin, 1974), Bulinus truncatus (Bayomy & Joosse, 1987), and P. 
columella (Gutiérrez et al., 2002). Although the experimental set-
ups and research goals were different in those studies, the similar-
ity among the effects is evident.

Reduced fecundity observed in the paired snails may also be due 
to the direct costs of mating in the female role (Daly, 1978; Rowe, 
1994), the receipt of excess sperm (Nilakhe, 1977), or the receipt of 
ejaculates containing accessory gland proteins that are harmful to 
the female (Eberhard & Cordero, 1995; Fowler & Partridge, 1989; 
Gems & Riddle, 1996). Hoffer et al. (2010) found that individuals of 
L. stagnalis that were experimentally restricted to the female func-
tion (receiving ejaculates) showed a similar reduction in egg laying to 
those allowed to mate reciprocally, suggesting that female mating 
costs for this species may be high due to the receipt of both excess 
sperm and accessory gland proteins such as ovipostatin, which is 
known to suppress egg laying (Hoffer et al., 2010; Koene, Montagne-
Wajer, & ter Maat, 2006).

Some species, namely P. acuta, R. auricularia, and S. palustris, 
showed no change in fecundity after mating. This could be due to 
a number of different factors: individuals of these species did not 
copulate at all or only infrequently; the costs of mating are not high 
enough to elicit a change in fecundity; females have adapted to 
counter the effect(s) of accessory gland proteins that are transferred 
in an ejaculate; and/or males of these species do not invest in costly 
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accessory gland proteins to affect the partner's physiology (note 
that these factors are not mutually exclusive). As a result, individuals 
of these species may not show resource allocation away from the 
female function.

Any of the mating costs associated with the male or female role 
reduce the resources available for the female function, which may 
affect the rate at which the female organs involved in egg produc-
tion recover after egg laying. For example, the albumen gland, which 
provides perivitelline fluid containing carbohydrates and proteins to 
the eggs, has been shown to restore almost completely in the time 
it takes to form a new egg mass (±32 hr) (Nagle, Akalal, & Painter, 
1999; Wijsman & van Wijck-Batenburg, 1987). As already shown by 
Koene and ter Maat (2004), snails that lay many eggs deplete their 
albumen gland; the degree to which this gland is full may provide a 
signal for egg laying. In addition, starvation (low resources) affects 
albumen gland enzyme activity and substantially reduces egg lay-
ing (Wijsman, 1989). Thus, a delay in repletion of the albumen gland 
could affect egg laying rates by limiting the number of eggs that can 
be provisioned and/or could result in smaller eggs.

Given this framework, one could hypothesize that females with 
lower albumen gland recovery rates have three main strategies in 
the trade-off between offspring numbers and size (quantity–qual-
ity), in which finite resources need to be partitioned between these 
different components of fecundity (Smith & Fretwell, 1974; Winkler 
& Wallin, 1987). The first is to delay egg laying, with an overall de-
crease in egg numbers and no reallocation of resources to egg pro-
visioning, as we found in P. columella and S. corvus. The second is 
to delay egg laying, with no change in egg numbers but instead lay 
smaller eggs, as we found in B. glabrata and B. alexandrina. And third 
is to delay egg laying, and to lay fewer eggs, but maintain or increase 
the provisioning per egg, as in L. stagnalis. In accordance with Hoffer 
et al. (2012), for the latter species, we found that egg production 
decreased as a result of mating, but egg size increased. The eggs 
that were laid were not only heavier but also larger, suggesting an 
increase in albumen gland products towards egg provisioning rather 
than a thicker gelatinous matrix surrounding the eggs. Being larger 
or better provisioned may affect hatchling survival and success 
(Moran & McAlister, 2009), although the adaptive advantage may 
depend on the environment (Hoffer et al., 2017).

Which of the three allocation strategies outlined above is most 
beneficial for each species depends on environmental factors, 
among others, which affect the relationship between egg size and 
offspring fitness. Egg size and mass shape have been shown to be 
important to meet the oxygen demands of the embryo, and can 
affect developmental temperature of the eggs (Duellman & Trueb, 
1986). For example, in the frog species Rana temporaria, it was found 
that not only did larger eggs retain heat better than smaller eggs, 
but that globular egg masses dissipated heat better than disc-like 
masses (Duellman & Trueb, 1986; Wells, 2010). In L. stagnalis, a spe-
cies with a Holarctic distribution, the larger eggs laid by mated snails 
may retain heat better and therefore develop faster and hatch ear-
lier. Given the reduced resources available for mated snails, it may be 
that L. stagnalis copes best by increasing egg size. Additionally, the 

globular egg masses of L. stagnalis may retain heat better, potentially 
being warmer than the surrounding water, while the gelatinous layer 
surrounding the eggs is porous enough for the dissolved oxygen to 
reach the centrally located eggs. However, a contrasting pattern was 
found in mated pairs of B. alexandrina and B. glabrata, in which egg 
numbers did not change, but egg size decreased, suggesting a differ-
ent evolutionary strategy (Smith & Fretwell, 1974; Winkler & Wallin, 
1987). The habitat of these species is rather different. Biomphalaria 
glabrata is Neotropical and B. alexandrina comes from Egypt. In such 
warmer waters, the eggs of the mated snails in this genus may not 
suffer too much from being smaller, as the lower oxygen demands of 
small eggs minimizes hypoxia (Moran & Woods, 2007). Chronic hy-
poxia in a salamander species was found to increase developmental 
time, delay hatching, and produce hatchlings that were less devel-
oped (Mills & Barnhart, 1999). In addition, the disc-like egg masses of 
the two species of Biomphalaria (Hathaway, Adema, Stout, Mobarak, 
& Loker, 2010) may dissipate heat better and potentially be lower in 
temperature than the surrounding water, while exposing each egg to 
the water for oxygen, often a limiting factor in warm water. Both egg 
size and mass shape have been shown to be adaptive to the oxygen 
demands of the embryo (Duellman & Trueb, 1986). As such, previ-
ous findings support that the trade-off between offspring number 
and size and egg mass shape is governed in part by environmental 
factors, with females opting for the strategy that will maximize their 
reproductive success.

A trade-off between offspring number and offspring quality in 
response to the maternal environment is consistent with life history 
that maximizes maternal fitness (Leips, Richardson, Rodd, & Travis, 
2009; Smith & Fretwell, 1974). In L. stagnalis, individuals can adjust 
offspring quality to seasonal changes by providing more serotonin to 
eggs earlier in the year or when population densities are high, thereby 
increasing developmental and behavioral characteristics such as 
enhanced locomotion for better dispersal potential (Ivashkin et al., 
2015). This supports work on separate-sexed organisms, in which the 
maternal environment (population density and environmental stress) 
influences investment to the offspring, such as in Orchesella cincta 
(Liefting, Weerenbeck, Van Dooremalen, & Ellers, 2010; Zizzari, 
Braakhuis, van Straalen, & Ellers, 2009), least killifish (Leips et al., 
2009), moor frogs (Räsänen, Laurila, & Merilä, 2005), apple snails 
(Ichinose & Tochihara, 2003), black widow spiders (Johnson, Miles, 
Trubl, & Hagenmaier, 2014), and dusky sharks (Hussey et al., 2010).

For future research, simple experiments could determine the 
validity of the three allocation strategies outlined above, and test 
whether there is an effect on albumen gland recovery rates after 
insemination and whether offspring from isolated and paired snails 
differ in survival and fitness at different temperatures. Assessing 
the average dry weight of the gland before egg laying (from iso-
lated snails), then, through a time series and monitoring albumen 
gland recovery rates of isolated and paired snails would indicate 
whether the albumen gland recovers slower in the mated pairs. 
Obtaining eggs from isolated and paired snails and comparing their 
survival rates at varying temperatures would indicate whether 
larger eggs of paired L. stagnalis, being better provisioned, would 
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survive better at lower temperatures, and whether smaller eggs 
laid by paired individuals of Biomphalaria spp., do nearly as well 
as the larger eggs of isolated snails at warmer temperatures. Both 
experiments would aid in elucidating the mechanisms behind the 
quality–quantity trade-off.
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